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Abstract In our recent paper, the electron spin torque is found to be counter-bal-
anced by the chiral electron density. In this paper, we shall show that the origin of the
chiral nature is manifest in the principle of equivalence in general relativity.
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1 Introduction

The dynamics of electron spin with the realization of spin-orbit coupling has recently
been of keen interest particularly in the field of spin torque transfer in spintronics; see
recent reviews [1–3] and references cited therein. We have shown that the spin torque
of the spin-1/2 Fermion is counter-balanced by the chiral electron density through
the zeta force [4]. We have also reported some preliminary numerical data of the spin
torque and zeta force for dimer of alkali atoms [5]. The special interest in this previous
paper was to the spin dynamics issues in Bose-Einstein condensation; see our previous
paper [5] and references cited therein. We shall show in this paper that the origin of the
chiral nature is manifest in the principle of equivalence in general relativity. We invoke
here the covariant formalism of general relativity equipped with vierbein (tetrad) field
on curved spacetime: see documents [6–8] and references cited therein.

We may first quickly review basic mathematics. The coordinate x with the con-
travariant components xμ and the covariant components xμ and the metric tensor
ημν = ημν of the Minkowski space, together with the inner product of two 4-vectors
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A and B written as A · B as well as the inner product of the Dirac gamma matrices
γ μ and a 4-vectors A written as the Feynman slash A are defined as follows:

xμ =
(

x0, xk
)

=
(

x0, x1, x2, x3
)

= (ct, x, y, z) = (ct, �r) = (ct, �x) (1)

xμ = ημνxν = (x0, xk) = (x0, x1, x2, x3) = (ct,−x,−y,−z) = (ct,−�r)
= (ct,−�x) (2)

ημν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ = ημν, ημρηρν = δμν =

{
1, μ = ν

0, μ �= ν
(3)

A · B = ημν AμBν = A0 B0 − �A• �B, �A• �B = Ax Bx + Ay By + Az Bz (4)

A = ημνγ
μAν = γ 0 A0 − �γ • �A, �γ • �A = γ 1 Ax + γ 2 Ay + γ 3 Az (5)

where c denotes the speed of light in vacuum and the Greek letter runs from 0 to 3 and
the Latin from 1 to 3 and the Einstein summation convention is used. The Poincaré
transformation T (�, a) ∈ P↑

+ consists of proper orthochronous Lorentz transforma-

tion T (�, 0) = � ∈ L↑
+ and translation T (0, a), which acts on x as

x ′ = �x + a, x ′μ = �μνxν + aμ, det� = 1, �0
0 > 1(

�−1
)μ

ν = �ν
μ = ηνκ�

κ
λη
λμ (6)

On the Minkowski space, the relativistic quantum mechanical motion of electron is
described by 4-spinor. According to the spinor representation of the Poincare group
P↑

+ [9–11] we have the linear momentum generator Pμ and the angular momentum
generator Jμν , which is composed of mutually commutable orbital Lμν and spin Sμν

parts with commutator [a, b] = ab − ba, as

Pμ = pμ, Jμν = Lμν + Sμν,
[
Lκλ, Sμν

] = 0 (7)

Lk
 = i h̄

(
pk ∂

∂p

− p


∂

∂pk

)
, Lk0 = i h̄ p0 ∂

∂pk
(8)

Sμν = i

4
h̄

[
γ μ, γ ν

]
(9)

where pμ denotes the momentum and γ μ the Dirac gamma matrices:

γ μ =
(
γ 0, γ k

)
=

(
γ 0, γ 1, γ 2, γ 3

)
=

(
γ 0, �γ

)
(10)

γμ = ημνγ
ν = (γ0, γk) = (γ0, γ1, γ2, γ3) =

(
γ 0,−γ 1,−γ 2,−γ 3

)
=

(
γ 0,−�γ

)

(11)

The spinor ψ(x) in the chiral representation ψchiral (x) is constructed by the undot-
ted spinorψR (x) = ξ A (x)with right-handed chirality and the dotted spinorψL (x) =
ηU̇ (x) with left-handed chirality as [12,13]
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ψ = ψchiral =
(
ψR

ψL

)
=

(
ξ A

ηU̇

)
(12)

ξ A =
(
ξ1

ξ2

)
, ηU̇ =

(
η1̇
η2̇

)
(13)

The undotted and dotted capital Latin letters run from 1 to 2 and change position by
using the antisymmetric matrix ε as

ξA = ξ BεB A, ηU̇ = εU̇ V̇ ηV̇ (14)

ξ A = εABξB, ηU̇ = ηV̇ εV̇ U̇ (15)

εAB =
(

0 1
−1 0

)
= εAB, εU̇ V̇ =

(
0 1

−1 0

)
= εU̇ V̇ (16)

where the Einstein summation convention is used. Using the two-dimensional irre-
ducible representation λ = λ (�) and the outer automorphism λ → λ̄ = λ†−1 of
SL(2,C), the chiral spinor representation D (λ) of the Poincaré group P↑

+ is the direct
sum of λ and its inequivalent complex conjugate irreducible representation λ̄ = λ†−1

as [13]

ψ ′ = D (λ)ψ, det λ = 1 (17)

D (λ) =
(
λA

B 0
0 λ̄U̇

V̇

)
, λ̄ = λ†−1 (18)

ξ ′A = λA
Bξ

B, η′
U̇ = λ̄U̇

V̇ ηV̇ (19)

The Pauli matrix σ with the contravariant components σμ and the covariant com-
ponents σμ

σμ =
(
σ 0, σ k

)
=

(
σ 0, σ 1, σ 2, σ 3

)
= (

1, σx , σy, σz
) = (1, �σ) (20)

σμ = ημνσ
ν = (σ0, σk) = (σ0, σ1, σ2, σ3) = (

1,−σx ,−σy,−σz
) = (1,−�σ)

(21)

(note the use of 1 as the unit matrix throuout in this paper) are cast into the Misner-
Thorne-Wheeler (MTW) representation as [14]

(σ0)
AU̇ = (

σ 0
)

V̇ B =
(

1 0
0 1

)
= σ 0

(σ1)
AU̇ = (

σ 1
)

V̇ B =
(

0 1
1 0

)
= σx

(σ2)
AU̇ = (

σ 2
)

V̇ B =
(

0 −i
i 0

)
= σy

(σ3)
AU̇ = (

σ 3
)

V̇ B =
(

1 0
0 −1

)
= σz

(22)
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Then, the Lorentz transformation

x ′ = �x, σ ′ = λσλ†, λ = λ (�) (23)

leaves the determinant of the inner product x · σ

(x · σ)AU̇ =
(

ct + z x − iy
x + iy ct − z

)
(24)

invariant:

x ′2 = det
(
x ′ · σ )AU̇ = det

(
x · σ ′)AU̇ = det (x · σ)AU̇ = x2 (25)

using

(
x ′ · σ )AU̇ = (

x · σ ′)AU̇ (26)

with

(
σ ′
μ

)AU̇ = λA
Bλ

∗U̇
V̇

(
σμ

)BV̇ = �νμ (σν)
AU̇ (27)

(
σ ′μ)AU̇ = λA

Bλ
∗U̇

V̇

(
σμ

)BV̇ = �ν
μ

(
σν

)AU̇ (28)

Also, the Dirac gamma matrices γ μ and the chiral matrix γ5

γ5 = iγ 0γ 1γ 2γ 3 (29)

are given in the chiral representation using the MTW representation of the Pauli matri-
ces as

γ 0 =
(

0 (σ0)
AU̇(

σ 0
)

V̇ B 0

)
=

(
0 σ 0

σ 0 0

)
=

(
0 1
1 0

)

γ k =
(

0 − (σk)
AU̇(

σ k
)

V̇ B 0

)
=

(
0 −σ k

σ k 0

)

γ5 =
((
σ 0

)A
B 0

0 − (
σ 0

)
U̇

V̇

)
=

(
σ 0 0
0 −σ 0

)
=

(
1 0
0 −1

)
(30)

where the following MTW representation is found for the diagonal block:

(
σ 0

)A
B = (

σ 0
)

U̇
V̇ = σ 0

(
σ 1

)A
B = (

σ 1
)

U̇
V̇ = σx(

σ 2
)A

B = (
σ 2

)
U̇

V̇ = σy(
σ 3

)A
B = (

σ 3
)

U̇
V̇ = σz

(31)
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Using the MTW representation, the Clifford algebra of the Dirac gamma matrices
with anticommutator {a, b} = ab + ba should be

{
γ μ, γ ν

} = 2ημν
((
σ 0

)A
B 0

0
(
σ 0

)
U̇

V̇

)
= 2ημν

(
1 0
0 1

)
= 2ημν (32)

Likewise, the conjugate ψ†, the Dirac conjugate ψ̄ = ψ†γ 0, and the Lorentz scalar
ψ̄ψ are

ψ† =
(
ξ A

ηU̇

)†

=
((
ξ A

)†
,
(
ηU̇

)†
)

(33)

ψ̄ =
((
ξ B

)†
,
(
ηV̇

)†
)(

0 (σ0)
BU̇(

σ 0
)

V̇A
0

)
=

((
ηV̇

)†
(
σ 0

)
V̇ A
,
(
ξ B

)†
(σ0)

BU̇
)

(34)

ψ̄ψ = (
ηV̇

)†
(
σ 0

)
V̇ A
ξ A +

(
ξ B

)†
(σ0)

BU̇ ηU̇ (35)

2 Electron spin density

Electron spin density and torque for it have recently been studied by Vernes-Györffy-
Weinberger in terms of polarization density [2]. In our recent paper [4], we have
studied the electron spin density and torque for it in terms of the bilinear covariants
of the Lorentz transformation [15] using the approach of Ref. [9–11] described in the
previous section, which we shall briefly review in the following Sects. 2.1 and 2.2.

2.1 Bilinear covariants

Using Eqs. (9) and (30), the chiral representation of the spin angular momentum
reduces to

Sk
 = i
4 h̄

[
γ k, γ 


] = 1
2 h̄εk
m Sm

�S = 1
2 h̄γ 0 �γ γ5 = 1

2 h̄

(
(�σ)A

B 0
0 (�σ)U̇ V̇

)
(36)

Sk0 = 1

2
i h̄γ kγ 0 = −1

2
i h̄

((
σ k

)A
B 0

0 − (
σ k

)
U̇

V̇

)
= −iγ5Sk (37)

where εk
m denotes the Levi-Civita symbol.
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The spin density is then written in the bilinear covariant form as the axial vector
(pseudovector):

�s(x) = 1

2
h̄ψ̄ (x) �γ γ5ψ (x) = ψ† (x) �Sψ (x) = 1

2
h̄ �σ(x) (38)

�σ(x) = �σR(x)+ �σL(x) (39)

�σR(x) = ψR
†(x)�σψR(x) =

(
ξ A

)†
(x) (�σ)A

Bξ
B(x)

�σL(x) = ψL
†(x)�σψL(x) = (

ηU̇

)†
(x) (�σ)U̇ V̇ ηV̇ (x) (40)

which is the spatial part of the 3rd rank antisymmetric tensor [12]. For discrete sym-
metry for the spin density �s(x), we have charge conjugation C , parity P , time-reversal
T symmetry as follows:

C�s (x)C−1 = �s (x) (41)

P�s (x)P−1 = �s (Px) (42)

T�s (x)T−1 = −t �s (T x) (43)

with

Pμν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ (44)

Tμν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (45)

where t �s in the right hand side of Eq. (43) means t �σ be used in place of �σ in Eq. (40).
We may first examine the chiral charge, spin density and spin torque summarized in

Appendices A and B (see Appendices A and B) for free electron satisfying the Dirac
equation in this case as

(
i h̄γ μ∂μ − mc

)
ψ (x) = 0, ∂μ = ∂/∂xμ (46)

where m is the mass of electron. The stationary state solution with the 3rd eigenvalue
ζ = ± 1

2 h̄ of spin S3 = �S•�ez using the unit vector �ez along the 3rd axis is:

ψ (x, ζ ) = u ( �p, ζ ) e− i
h̄ x ·p, (p − mc) u ( �p, ζ ) = 0, ζ = ±1

2
h̄ (47)
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where [15]

u

(
�p, 1

2
h̄

)
= 1

2
√

p0(p0 + mc)

⎛
⎜⎜⎝

p0 + mc + pz

p+
p0 + mc − pz

−p+

⎞
⎟⎟⎠ , p+ = px + i py (48)

u

(
�p,−1

2
h̄

)
= 1

2
√

p0(p0 + mc)

⎛
⎜⎜⎝

p−
p0 + mc − pz

−p−
p0 + mc + pz

⎞
⎟⎟⎠ , p− = px − i py (49)

In the rest frame attached to electron, the charge density, Eq. (A5), and the chiral spin
density, Eq. (40), are then

NR

(
�0,±1

2
h̄

)
= 1

2

NL

(
�0,±1

2
h̄

)
= 1

2
(50)

�σR(�0,±1

2
h̄) = ±1

2
�ez

�σL(�0,±1

2
h̄) = ±1

2
�ez (51)

In the inertial frame attached to observer, we have instead

NR

(
�p,±1

2
h̄

)
= 1

2p0

(
p0 ± pz

)

NL

(
�p,±1

2
h̄

)
= 1

2p0

(
p0 ∓ pz

)
(52)

�σR( �p,±1

2
h̄) = ± mc

2p0 �ez +
1 ± pz

p0+mc

2p0 �p

�σL( �p,±1

2
h̄) = ± mc

2p0 �ez −
1 ∓ pz

p0+mc

2p0 �p (53)

where the spin-orbit coupling (polarization) appears in the chiral spin density. The
polarization may be combined to give

�s
(

�p,±1

2
h̄

)
= 1

2
h̄ �σ

(
�p,±1

2
h̄

)
= ±1

2
h̄

(
mc

p0 �ez + pz

p0
(

p0 + mc
) �p

)
(54)

which is the well-known formula, Eq. (3.147) of [16]. The spin torque does not of
course work in this case, but if electron is accelerated by the external electromagnetic
field, further spin-orbit coupling, the Thomas precession and therefore the spin torque
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emerge to bring about the resultant further polarization as shown in Appendix C (see
Appendix C).

It should be noted that chirality of a particle has nothing to do with helicity as an
observable but is right (or left)-handed if its spin transforms according to a two-dimen-
sional irreducible representation λ (or its inequivalent complex conjugate irreducible
representation λ̄ = λ†−1) of SL(2,C). Helicity of a particle is right (or left)-handed if its
spin is parallel (or antiparallel) to its linear momentum. For massive particles, helicity
is not conserved since the direction of linear momentum depends on the inertial frame
of observer. For massless particles, helicity is conserved keeping direct relationship
with chirality.

2.2 Spin torque

The equation of motion of electron spin is [4]

∂

∂t
�s(x) = �t(x)+ �ζ (x) (55)

for electron under the external electromagnetic field satisfying the Dirac equation with
the covariant derivative as

(
i h̄γ μDμ − mc

)
ψ (x) = 0 (56)

Dμ = ∂μ + i
q

h̄c
Aμ (x) (57)

where q = −e is the charge of electron and Aμ (x) the Abelian gauge potential.
The right hand side of Eq. (55) is composed of two terms. First, the spin torque �t(x),

which is given by the antisymmetric part of the nonsymmetric (symmetry-polarized)

Hermitean stress tensor
↔
τ
�
(x):

tk(x) = −ε
nkτ
�
n(x) (58)

τ�k
(x) = c

2

(
ψ̄(x)γ 


(
−i h̄ Dk

)
ψ(x)+ h.c.

)
(59)

↔
τ
�†
(x) = ↔

τ
�
(x) (60)

τ�k
(x) �= τ�
k(x); nonsymmetric (symmetry-polarized) (61)

and the zeta force �ζ (x), which is given by the gradient of the zeta potential φ5(x)
proportional to the chiral charge density j0

5 (x) (see Appendix A) as follows:

ζ k(x) = −∂kφ5(x) (62)

φ5(x) = h̄

2q
j0
5 (x) = h̄c2

2
(NR(x)− NL(x)) (63)

For chiral spin-1/2 Fermion with the non-Abelian gauge potential, analogous equa-
tion of motion of spin has been found [4].
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Electron spin density �s(x) has rotational character as manifestly shown by the
vorticity rot�s (x):

rot�s (x) = 1

2

(
ψ̄ (x) �γ (i h̄ D0) ψ (x)+ h.c.

) − ��(x) (64)

In Eq. (64) is shown the kinetic momentum density ��(x) defined as

��(x) = 1

2

(
ψ†(x)

(
i h̄ �D(x)

)
ψ(x)+ h.c.

)
(65)

This satisfies the equation of motion [4]

∂

∂t
��(x) = �F(x) (66)

�F(x) = �L(x)+ �τ�(x) (67)

The force density �F(x) is composed not only of the Lorentz force density �L(x) but
also of the tension density �τ�(x) which is the divergence of the symmetry-polarized

stress tensor
↔
τ
�
(x)given in Eq. (59):

�τ�(x) = div
↔
τ
�
(x), �τ�k(x) = ∂
τ

�k
(x) (68)

The stress tensor itself is not defined uniquely [17,18] since mathematically any ten-

sor whose divergence is zero can be added to. Our stress tensor
↔
τ
�
(x) in Eq. (59)

is defined in such a way that it appears in the equation of motion of ��(x) as in Eqs.
(66)–(68).

The chiral partitionings of the working equations are summarized in Appendix B
(see Appendix B). Examples of the spin torque are found in Appendix C: the Volkow
wave function of the Dirac electron under the external time-dependent plane wave
electromagnetic field (see Appendix C) and Appendix D: the Landau wave function
of the Dirac electron under the influence of the external static uniform magnetic field
(see Appendix D).

2.3 Energy-momentum tensor

In this section, we derive the spin torque, zeta force and vorticity as a consequence of
the symmetry of energy-momentum tensor of gravitation. The gravitational action IG

is added to the system action IS and made stationary:

δ I = 0, I = IG + IS (69)
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under the variation δgμν of the metric tensor gμν :

IG = c

2κ

∫
R
√−gd4x, δ IG = c

2κ

∫ (
Rμν − 1

2
gμνR

)
δgμν

√−gd4x (70)

IS = 1

c

∫
L
√−gd4x, δ IS = 1

2c

∫
Tμνδg

μν√−gd4x (71)

The Einstein equation is then derived

Gμν (x) = Yμν (x) (72)

with the definition

Gμν (x) = Rμν (x)− 1

2
gμν (x) R (x) (73)

Yμν (x) = − κ

c2 Tμν (x) (74)

Since the Einstein tensor Gμν (x) is symmetric, so is the energy-momentum tensor
Tμν (x):

Gμν (x) = Gνμ (x) ; symmetric (75)

Tμν (x) = Tνμ (x) ; symmetric (76)

Using the tetrad formalism equipped with the principle of equivalence, the metric
tensor in any general noninertial coordinate system is given as

gμν (x) = ea
μ (x) eb

ν (x) ηab (77)

where ea
μ (x) denotes the tetrad field and the Latin letters a, b, c and so on runs from

0 to 3 in this and the subsequent Sects. 2.3 and 2.4. The tetrad field eaμ (x) is a coor-
dinate vector and a Lorentz vector for the Lorentz transformation x → x ′ associated
with the vector representation �a

b (x) [8]:

ea
μ (x) → e′a

μ

(
x ′) = ∂xν

∂x ′μ ea
ν (x) (78)

ea
μ (x) → e′a

μ (x) = �a
b (x) eb

μ (x) (79)

and is parallely transported:

∂νea
λ + {

κ
λ
ν

}
ea
κ − γa

b
νeb

λ = 0 (80)

In Eq. (80), we used the Levi-Civita affine connection

{
μ
λ
ν

} = 1

2
gλρ

(
∂μgνρ + ∂νgμρ − ∂ρgμν

) = {
ν
λ
μ

}
(81)
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and spin connection

γa
b
μ = eaν;μηbcec

ν (82)

where the covariant derivative is defined as

ea
λ;ν = ea

λ
,ν + {

κ
λ
ν

}
ea
κ (83)

eaλ;ν = eaλ,ν − {
λ
κ
ν

}
eaκ (84)

with the usual partial derivative denoted as

f,μ = ∂μ f (85)

In the tetrad formalism [7,8], the absolute parallelism of the tetrad field ea
μ (x) is

found to be

D∗
νea

λ = ∂νea
λ + �∗

μ
λ
νea

μ = 0 (86)

and the connection

�∗
μ
λ
ν = {

μ
λ
ν

} − ea
μγa

b
νeb

λ (87)

is used to define the torsion tensor

T ∗λ· μν = �∗
μ
λ
ν − �∗

ν
λ
μ (88)

and contorsion tensor

K ∗
λμν = 1

2

(
T ∗

λμν − T ∗
μλν − T ∗

νλμ

)
(89)

In the tetrad formalism, the Dirac spinor field is a coordinate scalar and a Lorentz
spinor [8]:

ψα (x) → ψ ′
α

(
x ′) = ψα (x) (90)

ψα (x) → ψ ′
α (x) = Dαβ (� (x)) ψβ (x) (91)

Also, what is important, the covariant derivative Dμ (g) is not only a coordinate scalar,
but also a Lorentz vector, as shown in Eqs. (12.5.15)–(12.5.17) and (12.5.24) of [8]:

Dμ (g) = ∂μ + �μ (92)

�μ (x) → �μ
′ (x) = D (� (x)) �μD−1 (� (x))− (

∂μD (� (x))
)

D−1 (� (x))

(93)
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The Lagrangian density for the quantum electrodynamics (QED) system under
external gravity is then given as

L = L E M + Le (94)

with the definition

L E M = − 1

16π
FμνFμν = − 1

16π
FμνFρσ gμρgνσ , Fμν = ∂μAν − ∂ν Aμ (95)

Le = 1

2
cψ̄

(
i h̄γ aea

μDμ (g)− mc
)
ψ + h.c. (96)

The gravitational covariant derivativeDμ (g) in Eq. (96), which satisfies Eqs. (92)–(93)
under the Lorentz transformation, is concretely written as

Dμ (g) = ∂μ + i 1
2h̄ γabμ J ab + i q

h̄c Aμ = Dμ + i 1
2h̄ γabμ J ab (97)

where the spin angular momentum J ab

J ab = i h̄

4

[
γ a, γ b

]
(98)

is added to the covariant derivative Dμ given in Eq. (57) through the coupling with spin
connection γabμ given in Eq. (82). The emergence of the spin connection is manifest
as the consequence of the principle of equivalence in general relativity.

It should be noted here that, after some manipulation we can rewrite Eq. (96) in a
very significant form as follows:

Le = 1
2 cψ̄

(
i h̄γ aea

μDμ (g)− mc
)
ψ + h.c.

= 1
2 cψ̄

(
i h̄γ aea

μ∂μ − mc
)
ψ + h.c.− 3h̄

4q aμ j5μ − 1
c Aμ jμ

(99)

Namely, which is hidden in Eq. (96), but in this Eq. (99), minimal couplings are mani-
festly shown; those not only of current jμ (x)with photon vector potential Aμ (x) but
also of chiral current jμ5 (x) (see Appendix A) with spin coupling vector aμ (x) defined
as

aμ = 1

6
εμνρσ T ∗

νρσ (100)

where T ∗
νρσ is the torsion tensor given in Eq. (88) and we have used the Levi-Civita

tensor:

εμνρσ = 1√−g
δμνρσ , δ0123 = 1 (101)

εμνρσ = √−gδμνρσ , δ0123 = −1 (102)

123



J Math Chem (2012) 50:669–688 681

Using the Lagrangian given in Eq. (94), the variation principle with respect to the
spinor field

δ

δψ̄
IS = 0 (103)

leads to the field equation

(
i h̄γ aea

μDμ (g)− mc
)
ψ = 0 (104)

Second, the variation principle with respect to the tetrad field leads to the symmetric
energy-momentum tensor Tμν and the conservation law as follows [8]:

δ IS = δ
1

c

∫
L
√−gd4x = 1

c

∫
T ·a
μ δea

μ√−gd4x (105)

Tμν
√−g = ηabeb

ν

∂

∂ea
μ

L
√−g (106)

Tμν = −ε�μν − τ�μν (g)− 1

4π
gρσ FμρFνσ − gμν (Le + L E M )

= Tνμ; symmetric (107)

T νμ;ν = 0 (108)

In Eq. (107), we have shown that the symmetric energy-momentum tensor Tμν com-
prises not only the symmetric tensors but also polarized geometrical tensor ε�μν
defined as

ε�μν = h̄c
4 eλνK ∗

ρσμε
λρσκψ̄γκγ5ψ

+ 2
((

D∗
λ + T ∗κ· κλ

)
Fμνλ· + T ∗

ρσμF·ρσ· ν − 1
2 T ∗

νρσ F ·
μ
ρσ

) (109)

with

Fabc = h̄c

8
εdabcψ̄γdγ5ψ (110)

and polarized stress tensor τ�μν (g) with the covariant derivative Dμ (g) given in
Eq. (97):

τ�μν (g) = c

2

(
ψ̄γν

(−i h̄ Dμ (g)
)
ψ + h.c.

)
(111)

Now that the energy-momentum tensor Tμν is symmetric, the antisymmetric com-
ponents should cancel with each other [6]:

εAμν + τ Aμν (g) = 0 (112)

where
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ε�μν = εSμν + εAμν (113)

εSμν = 1

2

(
ε�μν + ε�νμ

)
(114)

εAμν = 1

2

(
ε�μν − ε�νμ

)
(115)

and

τ�μν(g) = τ Sμν(g)+ τ Aμν(g) (116)

τ Sμν (g) = 1

2

(
τ�μν (g)+ τ�νμ (g)

)
(117)

τ Aμν (g) = 1

2

(
τ�μν (g)− τ�νμ (g)

)
(118)

2.4 Weak gravitation limit

In the limit of weak gravitation field

ea
μ → δa

μ, gμν → ημν (119)

the equation of motion of the Dirac spinor field ψ (x) is reduced from Eq. (104)
to the Dirac Eq. (56) in due course. Moreover, the antisymmetry cancelling
condition of Eq. (112) is reduced to ∂

∂t �s(x) = �t(x) + �ζ (x) and rot�s (x) =
1
2

(
ψ̄ (x) �γ (i h̄ D0) ψ (x)+ h.c.

) − ��(x). These equations are nothing but Eqs. (55)
and (64) respectively.

3 Result and discussion

We have shown the electron spin torque, zeta force and vorticity as a consequence
of the symmetry of energy-momentum tensor of gravitation. We have invoked here
the covariant formalism of general relativity equipped with vierbein (tetrad) field on
curved spacetime [6–8]. The symmetry we use here is hence restricted in this sense
and not reflect supersymmetry. The development of the spin torque, zeta force and
vorticity in the context of supersymmetry should be very interesting, since then the
spin of Boson as well as Fermion can be treated in a unified manner, which is under
way and will be published elsewhere.
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Appendix A

The electron current is defined by

jμ (x) = cqψ̄ (x) γ μψ (x) (A1)
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Here we have a very interesting chiral decomposition of electron current jμ (x) as

j0(x) = cq N (x) = cq (NR(x)+ NL(x)) (A2)
�j(x) = cq (�σR(x)− �σL(x)) (A3)

where the charge density is decomposed into the chiral parts as

N (x) = ψ† (x) ψ (x) = NR (x)+ NL (x) (A4)

NR (x) = ψR
† (x) ψR (x) =

(
ξ A

)†
(x)ξ A(x)

NL (x) = ψL
† (x) ψL (x) = (

ηU̇

)†
(x)ηU̇ (x) (A5)

and �σR(x)and �σL(x) are given in Eq. (40). Namely, the spatial part of the current
density is given by the difference in the chiral parts of the spin density.

The chiral decomposition of jμ (x) is also realized in a dual manner with the chiral
current jμ5 (x) defined as

jμ5 (x) = cqψ̄(x)γ μγ5ψ(x) (A6)

Here we have the chiral decomposition of jμ5 (x) dual to jμ (x) as

j5
0(x) = cq (NR(x)− NL(x)) (A7)
�j5(x) = cq �σ(x) = cq (�σR(x)+ �σL(x)) (A8)

where Eqs. (A7–A8) are dual to Eqs. (A2–A3). Namely, the chiral charge density
j50(x)is given by the difference in the chiral parts of the charge density, and the
spatial part of the chiral current density �j5(x)is given by the spin density.

The charge is conserved but not the chiral charge since we have no continuity equa-
tion for the latter because of the nonzero mass of electron. Actually, using Eq. (56),
we have continuity equation for jμ (x) as

∂μ jμ (x) = 0 (A9)

while for j5μ (x) we have residual pseudoscalar as the 4th rank antisymmetric tensor
as

1
cq ∂μ j5μ (x) = i 2mc

h̄ ψ̄ (x) γ5ψ (x)

= i 2mc
h̄

(−ψR
†(x)ψL(x)+ ψL

†(x)ψR(x)
)

= i 2mc
h̄

(
− (
ξ A

)†
(x) (σ0)

AU̇ ηU̇ (x)+ (
ηU̇

)†
(x)

(
σ 0

)
U̇ A ξ

A(x)
)

(A10)

which is not zero unless m is zero.
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Appendix B

The stress tensor is decomposed into the chiral parts as

↔
τ
�
(x) = ↔

τ R
� (x)− ↔

τ L
� (x) (B1)

τR
�k
 (x) = c

2

((
ξ A

)†
(x)

(
σ


)A
B

(
−i h̄ Dk

)
ξ B(x)+ h.c.

)

τL
�k
 (x) = c

2

((
ηU̇

)†
(x)

(
σ


)
U̇

V̇
(
−i h̄ Dk

)
ηV̇ (x)+ h.c.

)
(B2)

and therefore the torque as

�t(x) = �tR(x)− �tL(x) (B3)

tR
k(x) = −ε
nkτR

�
n(x)

tL
k(x) = −ε
nkτL

�
n(x) (B4)

and also the zeta force as

�̂ζ (x) = �̂ζ R(x)− �̂ζ L(x) (B5)

ζR
k(x) = −∂kφ5R(x)

ζL
k(x) = −∂kφ5L(x) (B6)

with the zeta potential

φ5(x) = φ5R(x)− φ5L(x) (B7)

φ5R(x) = h̄c

2
NR(x)

φ5L(x) = h̄c

2
NL(x) (B8)

The chiral parts of the kinetic momentum follows

��R (x) = ��R (x)+ ��L (x) (B9)

��R (x) = 1

2

((
ξ A

)†
(x)

(
i h̄ �D(x)

)
ξ A(x)+ h.c.

)

��L (x) = 1

2

((
ηU̇

)†
(x)

(
i h̄ �D(x)

)
ηU̇ (x)+ h.c.

)
(B10)

Thus, the chiral partitionings in Eqs. (55) and (64) are

∂

∂t
(�sR(x)+ �sL(x)) = �tR(x)+ �ζR(x)−

(
�tL(x)+ �ζL(x)

)
(B11)
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rot (�sR (x)+ �sL (x))+
( ��R (x)+ ��L (x)

)

= 1

2

((
ξ A

)†
(x) (�σ)A

Bi h̄ D0 (x) ξ
B(x)+ h.c.

)

−1

2

((
ηU̇

)†
(x) (�σ)U̇ V̇ i h̄ D0 (x) ηV̇ (x)+ h.c.

)
(B12)

Appendix C

The Volkov solution of the Dirac electron under a plane-wave radiation field

Aμ = Aμ (φ) , φ = k · x = k0ct − �k•�r , lim
φ→φin f

Aμ (φ) = 0 (C1)

is given as [12,19]

ψ =
(

1 + 1

2k · p

q

c
kA

)
e

i
h̄ S0 u (C2)

S0 = −x · p −
φ∫

φin f

(
1

k · p

q

c
p · A − 1

2k · p

(q

c

)2
A2

)
dφ (C3)

(p − mc) u = 0, ∂ · u = 0 (C4)

p2 = (mc)2 (C5)

Let the asymptotic free boundary condition with the 3rd eigenvalue ζ = ± 1
2 h̄ of spin

S3 = �S•�ez be

lim
φ2→φin f

ζ = ±1

2
h̄ (C6)

then we have

jμ
(

�p,±1

2
h̄

)
= cq

1

p0

(
pμ−q

c
Aμ+kμ

(
1

k · p

q

c
A · p− 1

2k · p

(q

c

)2
A2

))
(C7)

j5
0
(

�p,±1

2
h̄

)
= ±cq

⎛
⎜⎜⎜⎜⎜⎜⎝

pz
p0

+ 1
2k·p

q
c

⎛
⎝−2A0

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

+2k0
(
A0 pz

p0 − 1
p0(p0+mc)

pz �A• �p − mc
p0 Az

)
⎞
⎠

−
(

1
2k·p

q
c

)2
2A2k0

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(C8)
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j5
1
(

�p,±1

2
h̄

)
= ±cq

⎛
⎜⎜⎜⎜⎜⎜⎝

1
p0(p0+mc)

pz px

+ 1
2k·p

q
c

⎛
⎝−2Ax

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

+2kx

(
A0 pz

p0 − 1
p0(p0+mc)

pz �A• �p − mc
p0 Az

)
⎞
⎠

−
(

1
2k·p

q
c

)2
2A2kx

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(C9)

j5
2
(

�p,±1

2
h̄

)
= ±cq

⎛
⎜⎜⎜⎜⎜⎜⎝

1
p0(p0+mc)

pz py

+ 1
2k·p

q
c

⎛
⎝−2Ay

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

+2ky

(
A0 pz

p0 − 1
p0(p0+mc)

pz �A• �p − mc
p0 Az

)
⎞
⎠

−
(

1
2k·p

q
c

)2
2A2ky

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(C10)

j5
3
(

�p,±1

2
h̄

)
= ±cq

⎛
⎜⎜⎜⎜⎜⎜⎝

mc
p0 + 1

p0(p0+mc)
pz

2

+ 1
2k·p

q
c

⎛
⎝−2Az

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

+2kz

(
A0 pz

p0 − 1
p0(p0+mc)

pz �A• �p − mc
p0 Az

)
⎞
⎠

−
(

1
2k·p

q
c

)2
2A2kz

(
k0 pz

p0 − 1
p0(p0+mc)

pz �k• �p − mc
p0 kz

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(C11)

Assume then for simplicity, first, radiation field propagates along the 3rd axis asso-
ciated with the electric field along the 1st axis and the magnetic field in the 2nd axis:

Aμ = (0, Ax , 0, 0) (C12)

kμ =
(

k0, 0, 0, k0
)

(C13)

�E = −1

c

∂ �A
∂t

= (
Ex , Ey, Ez

) =
(

−k0 d Ax

dφ
, 0, 0

)
(C14)

�B = rot �A = (
Bx , By, Bz

) =
(

0,−k0 d Ax

dφ
, 0

)
(C15)

and, second, the electron propagates along the 3rd axis asymptotically:

pμ =
(

p0, 0, 0, pz

)
(C16)

It follows that the charge density, the spin density and zeta potential are given as

N = 1

cq
j0 = 1 + 1

2p0
(

p0 − pz
)

(q

c

)2
(Ax )

2 (C17)

�s = ±1

2
h̄

(
1

p0

q

c
Ax , 0, 1 − (N − 1)

)
(C18)
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φ5 = ± h̄c

2

(
pz

p0 − (N − 1)

)
(C19)

The spin torque and zeta force are calculated to be

�t = (
tx , ty, tz

) = ±1

2
h̄

(
q

k0

p0

d Ax

dφ
, 0, 0

)
(C20)

�ζ = (
ζx , ζy, ζz

) = ±1

2
h̄

(
0, 0,− ck0

p0
(

p0 − pz
)

(q

c

)2
Ax

d Ax

dφ

)
(C21)

Consequently, we have nonnul spin dynamics, which should be so since the Volkov
state is not stationary:

∂

∂t
�s = �t + �ζ �= �0 (C22)

As a trivial limit of free electron in the stationary state, the torque and zeta force
are calculated to be zero:

�t = �0, �ζ = �0 (C23)

and hence the sum:

∂

∂t
�s = �t + �ζ = �0 (C24)

which should be so since the state here is chosen stationary.

Appendix D

The Landau levels of the Dirac electron under a static uniform magnetic field along
the 3rd axis

Aμ =
(

0,−1

2
H y,

1

2
H x, 0

)
(D1)

is given in a textbook [16]. Using the Landau eigenfunctions Rn,m
,kz ,σ (ρ) with ρ =√
x2 + y2, the torque and zeta force are calculated to be cancelled with each other,

which should be so since the state is stationary:

∂

∂t
�s = �t + �ζ = �0 (D2)

But the vector components are nonzero in this case:

�ζ = −gradφ5 =
(

− ∂

∂x
φ5,− ∂

∂y
φ5, 0

)
(D3)
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with the zeta potential

φ5 = h̄c
En,m
,kz ,σ

c + mc

kzσ

(2π)2
(
Rn,m
,kz ,σ (ρ)

)2 (D4)

where n and m
 are the quantum numbers, kz is the wave number along the 3rd axis,
and where σ is the sign of the 3rd eigenvalue ζ = ± 1

2 h̄ of spin S3 = �S•�ez .
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